
Data Representation and
Numbering Systems

Compiled by: Tsegaye B. 1

Number Systems

•A number system is a set of symbols
used for counting

•There are various number systems
•Decimal
•Binary
•Octal
•Hexadecimal

Compiled by: Tsegaye B. 2

The Decimal Number System

• The Decimal number system is based on the ten
different digits (or symbols) 0,1,2,3,4,5,6,7,8,9.

• It is a base ten number system

• Though it is widely used, it is inconvenient for
computer to represent data.

Compiled by: Tsegaye B. 3

The Binary number system

• Binary number system is based on the two different digits; 0 and 1.
• We see that the nature of the electronic devices has similarity with

the binary number system in that both represent only two
elementary states;
• It is therefore convenient to use binary number system to represent

data in a computer;
• An “ON” corresponds to a 1;
• An “OFF” corresponds to a 0;
• In the computer “ON” is represented by the existence of a current

and “OFF” is represented by non existence of current
• On a magnetic disk, the same information is stored by changing the

polarity of magnetized particles on the disk’s surface.

Compiled by: Tsegaye B. 4

Octal number System (base 8) (Oct)

• It uses 8 symbols 0-7 to represent numbers;

• Like binary number system it is complete number system.

• Example 77 in octal equals 63 in decimal and 111111 in
binary.

•When we compare the octal with the decimal, 0-7 in
octal is the same as 0-7 in decimal but 10 in octal is not
the same as 10 in decimal because 10 in octal holds the
position of 8 in decimal.

Compiled by: Tsegaye B. 5

Hexadecimal number system (16) (hex)

• It uses 16 symbols (0,1,…9,A,B,C,D,E,F) to represent
numbers.
•Numbers greater than 15 are represented in terms of the 16

symbols.
• For example the decimal number 16 is represented as 10, 20

as 14, 30 as 1E and so on.
•When we compare hexadecimal with decimal, 0-9 in

hexadecimal is the same as 0-9 in decimal but 10 in
hexadecimal is not the same as 10 in decimal. 10 in
hexadecimal is rather equal to 16 in decimal.

Compiled by: Tsegaye B. 6

Example

DECIMAL OCTAL BINARY HEXADECIMAL

0 0 0 0

3 3 11 3

8 10 1000 8

10 12 1010 A

16 20 10000 A10

Compiled by: Tsegaye B. 7

Conversion from base M to decimal

• A number X1 X2 X3 …Xn in base M can be expanded as:
(X1 X2 X3 …..Xn)M=X1*mn-1+X2*mn-2X3*mn-3+ …+Xnm0 in base 10

Example

(1101)2 =1*23+1*22+0*21+1*20 =
=(1*8)+(1*4)+(0*2)+(1*1)
= 8+4+0+1
= 1310

Compiled by: Tsegaye B. 8

Conversion from decimal (base 10) to other base (base M)

• To convert a decimal number X to a number in base m,
divide X by m, store the remainder, again divide the
quotient by M, store the remainder, and continue until
the quotient is 0. And concatenate (collect) the
remainders starting from the last up to the first.

• Example

• Convert 3010 to base sixteen (hexadecimal)

3010=1E16

• Convert 7810 to base eight (Octal)

7810=1168
Compiled by: Tsegaye B. 9

Binary to Decimal Conversion (the simple way)

• The columns in binary represent:

27 26 25 24 23 22 21 20

128s 64s 32s 16s 8s 4s 2s units

• e.g. the binary number

0 0 0 1 0 1 0 1

is equal to 16 + 4 + 1 = 21 in decimal.

• The number 1110 = 8+4+2 = 14 in decimal

Compiled by: Tsegaye B. 10

Compiled by: Tsegaye B. 11

Decimal to binary conversion (the simple way)

Compiled by: Tsegaye B. 12

Conversion from binary (base2) to Octal (base 8)

• To convert a number in binary to octal group three
binary digits together starting from the last digit
(right) and if there are no enough digits add zeros to
the front end (left) and find the corresponding Octal
of each group.

• Example

Compiled by: Tsegaye B. 13

Conversion from Octal (base 8) to binary (base2)

• To convert from Octal to binary, convert each octal digit to its
equivalent 3 bit binary starting from right.

• Example

Compiled by: Tsegaye B. 14

Conversion from binary (base 2) to hexadecimal (base 16)

• To convert binary to hexadecimal group four binary
digits together starting from right and if there are no
enough digits add zeros at the left. Then convert each
nibble into its corresponding hex value.

• Example

Compiled by: Tsegaye B. 15

Conversion from hexadecimal (base 16) to binary (base 2)

• To convert from Hexadecimal to binary convert each
hex. Digit to its equivalent 4-bit binary starting from
right.

• Example

Compiled by: Tsegaye B. 16

Conversion from Octal to hexadecimal and Vise versa

• To convert from Octal to hexadecimal, the octal
number has to be first converted into binary and
then to hexadecimal.

• A similar procedure is followed to convert from
octal to hex.

• Example

Compiled by: Tsegaye B. 17

Converting decimal number with fractions to binary

• First change the integer part to its equivalent binary.

• Multiply the fractional part by 2 and take out the
integer value, and again multiply the fractional part
of the result by 2 and take out the integer part,
continue this until the product is 0.

• Collect the integer values from top to bottom &
concatenate them with the integer part.

Example
12.2510 1100.012

3.187510 11.00112

Compiled by: Tsegaye B. 18

Converting Binary with fraction to decimal

• To convert a binary number Y1Y2…Yn.d1d2...dm to decimal, first
convert the integer part to decimal using the formal conversion
method.

• Convert the fractional part to decimal using:

d1d2d…dm=d1*2-1+d2*2-2+d3*2-3+..+dm*2-m

• Then decimal equivalence of y1 y2 ...yn.d1d2…dm will be Q+R where
Q is the binary integer part and R is the binary fractional part.

Example

Compiled by: Tsegaye B. 19

Conversion from Binary with fraction to Octal/hex

• Group three/four digits together starting from the last digit of the integer
part, and if there is less number of digits add some zeros in the beginning.

• Group three/ four digits together starting from the first digit of the
fractional part, and if there is less number of digits add some zeros to the
end.

• Covert each group of the integer and the fractional part to their equivalent
Octal/hexadecimal.

• Example

1010.01112 12.348

1110101.101112 75.B816

Compiled by: Tsegaye B. 20

Conversion from Octal or hex with fraction to binary

• Convert each Octal/hexadecimal digit to its equivalent 3/4-bit binary
digit.

• Collect the binary sequences by separating the integer part binaries
from the fractional part binaries with point (.)

• Example

A3.1516 10100011.000101012

34.278 011100.0101112

Compiled by: Tsegaye B. 21

• Conversion from Octal with fraction to hexadecimal
• To convert from Octal to hexadecimal, first convert the Octal to binary and then the

binary to hexadecimal

• Conversion from Hexadecimal with fraction to octal
• To convert from hexadecimal to octal, first convert the hexadecimal to binary and

then the binary to octal.

• Conversion from octal/hexadecimal with fraction to decimal.
• To convert from octal/hexadecimal to decimal, first convert to binary and –then the

binary to decimal.

• You can also convert directly from octal/hexadecimal to decimal just as we did for
the conversion from binary to decimal.

Compiled by: Tsegaye B. 22

Binary addition

• Binary addition operates by the same rule as decimal addition.

• A carry to the next higher order (or more significant) position occurs when
the sum is decimal 2, that is, binary 10.

• The binary addition rules in general may be written as follows:

0+0=0

0+1=1

1+0=1

1+1=0 plus a carry of 1

Compiled by: Tsegaye B. 23

Binary Subtraction

• Binary subtraction operates by the same rule as decimal subtraction.

• The rules for subtraction are as follows:

0-0=0

1-0=1

1-1=0

10-1=1

Compiled by: Tsegaye B. 24

Binary Multiplication

• It is a very simple process that operates by the following intuitive
rules:
• Multiplying any number by 1 makes the multiplicand unchanged

0x1=0

1x1=1
• Multiplying any number by 0 produces 0

0x0=0

1x0=0

• Example

101101 x 1011 = 111101111

Compiled by: Tsegaye B. 25

Binary division

• It is similar to decimal division

• It simply is the process for dividing one binary number (the dividend) by
another (the divisor) and is based on the rules for binary subtraction and
multiplication.

• Example

1111101÷ 11001

11001 101

11001

11001

00000

• Thus, 1111101 ÷ 11001 = 101

Compiled by: Tsegaye B. 26

Representation of Negative numbers

•There are different ways of representing
negative numbers in a computer:

• Sign- Magnitude Representation

• One’s Complement Representation

• Two’s Complement Representation

Compiled by: Tsegaye B. 27

Sign- Magnitude representation

• In signed binary representation, the left-most bit is used to indicate the
sign of the number.

• 0 is used to denote a positive number and

• 1 is used to denote a negative number.

• But the magnitude part will be the same for the negative and positive
values

• For example 11111111 represents -127 while, 01111111 represents +127

• In a 5-bit representation, we use the first bit for sign and the remaining
4-bits for the magnitude

Compiled by: Tsegaye B. 28

Sign- magnitude representation cont’d..

• Using 5 bit representation, the range of numbers that can be represented
is from -15 (11111) to 15(01111)

• Example

Represent -12 using 5-bit sign magnitude representation

first we convert 12 to binary i. e 1100

Now -12 = 11100

Represent –24 using 8-bits

24 = 00011000

-24 = 10011000

Compiled by: Tsegaye B. 29

Sign- magnitude representation cont’d..

• In general, for n-bit sign–magnitude representation, the range of values
that can be represented is – (2 n-1-1) to (2 n-1-1).

• In sign magnitude representation zero can be represented as 0 or -0.

• Sign magnitude representation has two problems:

• It reduces the maximum size of magnitude, and

• It lacks speed efficiency to perform arithmetic and other operations
when implemented in computer hardware. This is because, for sign
magnitude representation, addition and subtraction are relatively
complex, involving the comparison of signs and relative magnitude of
the two numbers

Compiled by: Tsegaye B. 30

One’s complement
• In one’s complement representation, all positive integers are represented in

their correct binary format.
• Eg. +3 is represented as 00000011 in 8-bit 1’s complement

• Negative numbers are represented by complementing (changing each 0 into
1 and each 1 into 0) their positive equivalent.
• Eg. -3 is represented as 11111100 in 8-bit

• As in sign magnitude, when the MSB(most significant bit) is 1, it indicates
that we have a negative number

• More formally, the 1’s complement of a negative number -N is defined as:
N* = (2n -1) - N

where: n is the number of bits per word

N is a positive integer

N* is -N in 1's complement notation

Compiled by: Tsegaye B. 31

One’s complement cont’d..

• For example with an 8-bit word and N = 6, we have:

N* = (28 -1) - 6 = 255 - 6 = 249 = 111110012. That is

11111111

-00000110

11111001. Thus, 11111001 is -6 in 1’s complement.

Example: +2 is 00000010

-2 is 11111101

• Note that in this representation, positive numbers start with a 0 on the left,
and negative numbers start with a 1 on the left most bit.

Compiled by: Tsegaye B. 32

One’s complement cont’d..

• Ex1. add –3 and 3 with word size 4
3= 0011

-3=1100

sum =1111 (=0)

• Ex2. Add -4 and +6 with 8-bits
- 4 is 11111011

+ 6 is 00000110

the sum is (1) 00000001 the one in the parenthesis is the external carry.

The correct result should be 2 or 00000010.

• In one’s complement addition and subtraction, if there is an external carry it
should be added to get the correct result. This indicates it requires additional
circuitry for implementing this operation.

Compiled by: Tsegaye B. 33

One’s complement cont’d..
• The largest number that can be represented in 8-bit 1's complement is

011111112 = 127. The smallest is 100000002 = -127. Note that the values
000000002 and 111111112 both represent zero.

• What is the largest and smallest number representations for a 4-bit word?
Ans: 7 and -7.

• Use the formula 2n-1- 1 for the maximum and 1-2n-1 for the
minimum(smallest).

• There is no overflow as long as the magnitude of the result is not greater
than 2n-1-1.

• One disadvantage of one’s complement representation is that there are two
representations of zero (i.e. 0000 and 1111, say in 4-bits).

• The other disadvantage is that the end-around carry complicates the
addition operation.

Compiled by: Tsegaye B. 34

Two’s Complement Representation

• In two’s complement representation, positive numbers are
represented just like in one’s complement.

• Negative numbers, however, are represented by first computing
the one’s complement and then adding 1.

• Negating a number (whether negative or positive) is done by
inverting all the bits and then adding 1 to that result.

• As in sign magnitude and 1s complement, when the MSB is 1, it
indicates that we have a negative number.

Compiled by: Tsegaye B. 35

Two’s Complement Representation cont’d..

• The reason 2’s complement was introduced is so as to ignore the external
carry that results during the addition process of one’s complement.

• Signed integer values are usually stored on the computer in 2s
complement form.
• Ex: +3 is represented in signed binary as 00000011

• Its one’s complement representation is 11111100.

• The two’s complement is obtained by adding one. It is 11111101.

• Formally, the 2’s complement of a negative number N is defined as:
N * = 2n - N

where: n is the number of bits per word

N is a positive integer

N* is -N in 2's complement notation

Compiled by: Tsegaye B. 36

Two’s Complement Representation cont’d..

• For example with an 8-bit word and N = 6, we have:
N* = 28 - 6 = 256 - 6 = 250 = 11111010, that is

100000000

- 110

11111010

• An alternate way to find the 2's complement is to start at the right and
complement each bit to the left of the first "1".
• For example: N = +6 = 000001102 , N* = -6 = 111110102

• Conversely, given the 2's complement we can find the magnitude of the
number by taking it's 2's complement.

Compiled by: Tsegaye B. 37

Two’s Complement Representation cont’d..

• The largest number that can be represented in 8-bit 2’s complement is 011111112 = 127. The smallest is
100000002 = -128.

• For an n digit in 2’s complement, maximum number is 2n-1-1 and the minimum is -2n-1.

• Ex let’s try addition.

(3) 00000011

+ (5) 00000101

(8) 0001000

• Ex2. Let’s try subtraction

(3) 00000011

(-5) 111111011

11111110

You can convert the result to 2’s complement to get the magnitude of the number. It becomes 00000010.

Compiled by: Tsegaye B. 38

Two’s Complement Representation cont’d..

• Ex2: add +4 and -3(the subtraction is performed by adding the two’s
complement).

+4 is 00000100

-3 is 11111101

The result is [1-the carry] 00000001

• If we ignore the external carry the result is 00000001 (i. e 1 in
decimal). This is the correct result.

Compiled by: Tsegaye B. 39

Two’s Complement Representation cont’d..

• In two’s complement, it is possible to add or subtract signed numbers,
regardless of the sign.

• Using the usual rules of binary addition, the result comes out correct,
including the sign.

• The carry is ignored. One’s complement may be used, but if one’s
complement is used, special circuitry is required to “correct the result”.

• When the addition of two values results in a carry, the carry bit is ignored.
There is no overflow as long as the result is not greater than 2n-1-1 nor less
than -2n-1.

Compiled by: Tsegaye B. 40

Two’s Complement Representation cont’d..

• Find -12 + 10.
11110100

+00001010

11111110

• 11111100 is a negative number. Determine it’s magnitude by finding it’s 2’s
complement. We have 00000010 which is 2.

Compiled by: Tsegaye B. 41

Two’s Complement Representation cont’d..

• Overflow: this is an example of an overflow condition in 2’s complement.

• Example

(100) 01100100

+(30) 00011110

10000010

• However, the result represents not 130 but -126. That means, because 130 is
represented by 8 bits, it requires at least 9 bits to hold the sign of the result.

Compiled by: Tsegaye B. 42

Two’s Complement Representation cont’d..

• The two’s complement representation has one anomaly not found with sign
magnitude or one’s complement. The bit pattern 1 followed by N-1 zeros is
its own 2’s complement.

• For example, for 8-bit word,

-128 = 10000000

its 1’s complement =01111111

+1

=100000000

• To maintain sign bit consistency, this bit pattern is assigned the value –2N-1 .

• Thus, in 2’s complement 8-bit, 10000000 represents -128.

Compiled by: Tsegaye B. 43

Floating-Point Representation

• In this representation, decimal numbers are represented with a fixed length
format

• To avoid wastage of bits, this representation normalizes all the numbers.

• For example, 0.000123 wastes three zeroes on the left before non -zero
digits. Normalizing this number result in .123x10-3,
• .123 is the normalized mantissa;

• -3 is the exponent.

• The general form of floating point representation is Mx10E where M is the
mantissa, and E is the exponent.

•

Compiled by: Tsegaye B. 44

Floating-Point Representation cont’d..

• To represent floating numbers in the computer system it should be
normalized after converting to binary number representation system.

• Ex2 111.01 is normalized as .11101x103.
• The mantissa is 11101. The exponent is 3.

• The general structure of floating point is:

• In representing a number in floating point we use 1 bit for sign, some bits
for exponent and the remaining bit for mantissa.

Compiled by: Tsegaye B. 45

Floating-Point Representation cont’d..

• In floating point representation, the exponent is represented by a biased
exponent.

• (Biased exponent)= (true exponent) + (2n-1), where n is the number of bits
reserved for the exponent. The biasing exponent representation is called excess
2n-1.

• Example. Represent –226.375 in floating point using 7 bit for exponent and 16 bit
for mantissa.
• First we have to change to normalized binary (i.e 226 = 11100010 and 0.375= 0.011)
• 226.375 = 11100010.011 = 0.11100010011x28

• true exponent = 8
• excess 2 n-1 = 2 7-1= 26= 64
• Biased exponent = 8+64 = 72 = 100 1000 2
• Therefore –234.375 is represented as: 1 1001000 1110001001100000

Compiled by: Tsegaye B. 46

Floating-Point Representation cont’d..

• Example. Given the number represented in a floating point representation

• what is the number in decimal form?

• The exponent 10001102 is 70. Since it is 7 bits, the biasing is 64; hence the
true exponent is 70-64=6. The mantissa is 0.100010012. Thus, 0.100010012
x 26 = 100010.012. Converting the number into decimal, we get 34.25.

0 1000110 1000100100000000000000000

Compiled by: Tsegaye B. 47

Floating-point Arithmetic

• To perform floating-point arithmetic:
• First correct the numbers to binary with the same exponent
• Apply the operator on the mantissa and
• Normalize the result

• Example.
• Find 123456.375+ 101.25 using 7-bit for exponent and 24 bits for mantissa.
• 123456.375 =11,110,001,001,000,000.011=0.11110001001000000011x217.
• 101.25 =1,100,101.01 = 0.110010101 x27 = 0.0000000000110010101 x217.

• Adding the mantissas gives,
• 0.11110001001000000011 + 0.0000000000110010101= 0.11110001010100101101.

• The final number becomes, 0.11110001010100101101 x 217.

Compiled by: Tsegaye B. 48

Coding Methods in computer
• It is possible to represent any of the characters in our language as a series of

electrical switches (transistors);

• These switch arrangements can therefore be coded as a series of an
equivalent arrangements of bits

• There are different coding systems, that convert one or more character sets
into computer codes. Some are: EBCDIC, ASCII-7, ASCII-8 & Unicode.

• In all cases, binary coding schemes separate the characters, known as
character set, in to zones.

• A zone groups characters together so as to make the data easier to process
by computers.

• With in each zone the individual characters are identified by digit code.

Compiled by: Tsegaye B. 49

EBCDIC
• Pronounced as “Eb-see-dick” and stands for Extended Binary Coded

Decimal Interchange Code.

• Proprietary specification developed by IBM

• It is an 8-bit coding scheme; (00000000 to 11111111)

• It accommodates to code 28 or 256 different characters

• It is a standard coding scheme for mainframe computers of IBM.

• Coding Examples
Character Zone(4BIT) Digit(4 BIT)

0-9 15 0-9
a-I 8 1-9
j-r 9 1-9
s-z 10 2-9
A-I 12 1-9

Compiled by: Tsegaye B. 50

EBCDIC cont’d..

• Coding Examples

Character Zone Digit

a 1000 0001

b 1000 0010

A 1100 0001

B 1100 0010

0 1111 0000

9 1111 1001

Compiled by: Tsegaye B. 51

EBCDIC

Compiled by: Tsegaye B. 52

EBCDIC

Compiled by: Tsegaye B. 53

EBCDIC

ASCII

• ASCII stands for American Standard Code for Information Interchange

• ASCII is of two types: ASCII-7 and ASCII-8

• ASCII-7 Used widely before the introduction of ASCII-8 (the Extended ASCII)

• ASCII-7 Uses 7 bits to represent a character

• With the seven bits, 27(or 128) different characters can be coded (0000000-
1111111)

• It has a zone and digit bits positions

• Coding examples:
Character zone (3 BIT) digit(4 BIT)
0-9 3 0-9
A-O 4 1-15
P-Z 5 0-10

Compiled by: Tsegaye B. 55

ASCII

Compiled by: Tsegaye B. 56

ASCII-7 cont’d..
• Coding examples:

Character Zone Digit

$ 010 0100

% 010 0101

A 100 0001

a 110 0001

b 110 0010

Compiled by: Tsegaye B. 57

ASCII-7 cont’d..

Compiled by: Tsegaye B. 58

The ASCII System
• Also referred as ASCII-8 or Extended ASCII

• It is the most widely used type of coding scheme for microcomputer systems

• ASCII uses 8-bits to represent alphanumeric characters(letters, digits and
special symbols).

• With the 8-bits, ASCII can represent 28 or 256 different characters(00000000-
11111111).

• Coding Example Character Binary representation in ASCII

a 01100001

b 01100010

A 01000001

B 01000010

? 00111111

+ 00101011

1 00110001

2 00110010

3 00110011

Compiled by: Tsegaye B. 59

ASCII

The ASCII System

Compiled by: Tsegaye B. 61

Unicode

• Unicode is a computing industry standard allowing computers to consistently
represent and manipulate text expressed in most of the world's writing
systems.

• Unicode consists of a collection of more than 100,000 characters.

• Unicode can be implemented by different character encodings.

• The most commonly used encodings are UTF-8 which uses 1 byte
for all ASCII characters, which have the same code values as in the
standard ASCII encoding, and up to 4 bytes for other characters

Compiled by: Tsegaye B. 62

Unicode

Compiled by: Tsegaye B. 63

Unicode cont’d..
• Let’s consider how Ethiopia’s character sets are represented

• The character set is called Ethiopic

• Range: 1200-1378 (in hexadecimal)

• Example character sets

Compiled by: Tsegaye B. 64

