## Data Representation and Numbering Systems

Number Systems

- A number system is a set of symbols used for counting
-There are various number systems
- Decimal
- Binary
- Octal
- Hexadecimal


## The Decimal Number System

- The Decimal number system is based on the ten different digits (or symbols) 0,1,2,3,4,5,6,7,8,9.
- It is a base ten number system
- Though it is widely used, it is inconvenient for computer to represent data.


## The Binary number system

- Binary number system is based on the two different digits; 0 and 1.
- We see that the nature of the electronic devices has similarity with the binary number system in that both represent only two elementary states;
- It is therefore convenient to use binary number system to represent data in a computer;
- An "ON" corresponds to a 1 ;
- An "OFF" corresponds to a 0 ;
- In the computer "ON" is represented by the existence of a current and "OFF" is represented by non existence of current
- On a magnetic disk, the same information is stored by changing the polarity of magnetized particles on the disk's surface.


## Octal number System (base 8) (Oct)

- It uses 8 symbols 0-7 to represent numbers;
- Like binary number system it is complete number system.
- Example 77 in octal equals 63 in decimal and 111111 in binary.
- When we compare the octal with the decimal, 0-7 in octal is the same as $0-7$ in decimal but 10 in octal is not the same as 10 in decimal because 10 in octal holds the position of 8 in decimal.


## Hexadecimal number system (16) (hex)

- It uses 16 symbols ( $0,1, \ldots 9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ ) to represent numbers.
- Numbers greater than 15 are represented in terms of the 16 symbols.
- For example the decimal number 16 is represented as 10,20 as 14,30 as 1 E and so on.
- When we compare hexadecimal with decimal, 0-9 in hexadecimal is the same as $0-9$ in decimal but 10 in hexadecimal is not the same as 10 in decimal. 10 in hexadecimal is rather equal to 16 in decimal.

Example

| DECIMAL | OCTAL | BINARY | HEXADECIMAL |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 3 | 3 | 11 | 3 |
| 8 | 10 | 1000 | 8 |
| 10 | 12 | 1010 | A |
| 16 | 20 | 10000 | A10 |

Conversion from base M to decimal

- A number $X_{1} X_{2} X_{3} \ldots X_{n}$ in base $M$ can be expanded as:

$$
\left(X_{1} X_{2} X_{3} \ldots . . X_{n}\right)_{M}=X_{1}^{*} m^{n-1}+X_{2}^{*} m^{n-2} X_{3} * m^{n-3}+\ldots+X_{n} m^{0} \text { in base } 10
$$

## Example

$(1101)_{2}=1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}=$
$=(1 * 8)+(1 * 4)+(0 * 2)+(1 * 1)$
$=8+4+0+1$
$=13_{10}$

Conversion from decimal (base 10) to other base (base M)

- To convert a decimal number $X$ to a number in base $m$, divide $X$ by $m$, store the remainder, again divide the quotient by M , store the remainder, and continue until the quotient is 0 . And concatenate (collect) the remainders starting from the last up to the first.


## - Example

- Convert $30_{10}$ to base sixteen (hexadecimal)

$$
30_{10}=1 \mathrm{E}_{16}
$$

- Convert $78_{10}$ to base eight (Octal)

$$
78_{10}=116_{8}
$$

## Binary to Decimal Conversion (the simple way)

- The columns in binary represent:

| $2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $128 s$ | $64 s$ | $32 s$ | $16 s$ | $8 s$ | $4 s$ | $2 s$ | units |

- e.g. the binary number

| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

is equal to $16+4+1=21$ in decimal.

- The number $1110=8+4+2=14$ in decimal

Convert the following binary numbers into decimal based on the following example.

Ex. The number $1110=8+4+2=14$ in decimal

1. 110101
2. 1001
3. 0101
4. 1111
5. 11010
6. 10001

## Decimal to binary conversion (the simple way)

- We want to represent the number 83 in binary


Conversion from binary (base2) to Octal (base 8)

- To convert a number in binary to octal group three binary digits together starting from the last digit (right) and if there are no enough digits add zeros to the front end (left) and find the corresponding Octal of each group.
- Example

Convert 1001001 to octal

$$
\begin{aligned}
& 1001001=001,001,001 \\
& =111_{8}
\end{aligned}
$$

Convert 101101001 to octal

$$
101101001=101,101,001
$$

$=551_{8}$

## Conversion from Octal (base 8) to binary (base2)

- To convert from Octal to binary, convert each octal digit to its equivalent 3 bit binary starting from right.
- Example

Convert (675) eight to binary
$675_{\text {eight }}=110111101$
$={110111101_{\text {two }}}$

Convert $231_{\text {eight }}$ to binary

$$
\begin{aligned}
231_{\text {eight }} & =010011001 \\
& =10011001_{\text {two }}
\end{aligned}
$$

Conversion from binary (base 2) to hexadecimal (base 16)

- To convert binary to hexadecimal group four binary digits together starting from right and if there are no enough digits add zeros at the left. Then convert each nibble into its corresponding hex value.
- Example

Convert 111100100 to hexadecimal

| 111100100 | $=00011110$ | 0100 |  |
| ---: | :--- | :--- | :--- |
|  | $=1$ | 14 | 4 |
|  | $=1$ | $E$ | 4 |
|  | $=1 \mathrm{E} 4_{16}$ |  |  |

Convert 111001111 to hexadecimal

| 111001111 | $=0001$ | 1100 | 1111 |
| ---: | :--- | :--- | :--- |
|  | $=1$ | 12 | 15 |
|  | $=1$ | $C$ | $F$ |
|  | $=(1 C F)_{16}$ |  |  |

    \(=1 \quad 12 \quad 15\)
    \(=(1 C F)_{16}\)
    Conversion from hexadecimal (base 16) to binary (base 2)

- To convert from Hexadecimal to binary convert each hex. Digit to its equivalent 4-bit binary starting from right.
- Example

$$
\begin{aligned}
& \text { Convert } 2 A C \text { to binary } \\
& \begin{aligned}
2 \mathrm{AC}_{16} & =001010101100 \\
& =1010101100_{2}
\end{aligned}
\end{aligned}
$$

Convert $234_{16}$ to binary

## Conversion from Octal to hexadecimal and Vise versa

- To convert from Octal to hexadecimal, the octal number has to be first converted into binary and then to hexadecimal.
- A similar procedure is followed to convert from octal to hex.
- Example

```
Convert 1A to Octal
1A=0001 1010
    =000 011010
    =0 3 2
    =328

Convert \(235_{8}\) to hexadecimal
```

2358=010 011 101

```
2358=010 011 101
    =0000 1001 1101
    =0000 1001 1101
    =0 9 13
    =0 9 13
    =9D 16
```

```
    =9D 16
```

```

Converting decimal number with fractions to binary
- First change the integer part to its equivalent binary.
- Multiply the fractional part by 2 and take out the integer value, and again multiply the fractional part of the result by 2 and take out the integer part, continue this until the product is 0 .
- Collect the integer values from top to bottom \& concatenate them with the integer part.
\[
\begin{aligned}
& \text { Example } \\
& \qquad \begin{array}{l}
12.25_{10} \Leftrightarrow 1100.01_{2} \\
3.1875_{10}
\end{array} \Leftrightarrow 11.0011_{2}
\end{aligned}
\]

\section*{Converting Binary with fraction to decimal}
- To convert a binary number \(Y_{1} Y_{2} \ldots Y_{n} . d_{1} d_{2} \ldots d_{m}\) to decimal, first convert the integer part to decimal using the formal conversion method.
- Convert the fractional part to decimal using:
\[
\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{\ldots} . \mathrm{d}_{\mathrm{m}}=\mathrm{d}_{1} * 2^{-1}+\mathrm{d}_{2} * 2^{-2}+\mathrm{d}_{3} * 2^{-3}+. .+\mathrm{d}_{\mathrm{m}} * 2^{-\mathrm{m}}
\]
- Then decimal equivalence of \(y_{1} y_{2} \ldots y_{n} \cdot d_{1} d_{2} \ldots d_{m}\) will be \(Q+R\) where \(Q\) is the binary integer part and \(R\) is the binary fractional part.

\section*{Example}
```

Convert 11001.0101 to decimal
11001 = 1\times2 4 + 1\times2 2 +0x2 2}+0\times\mp@subsup{2}{}{1}+1\times\mp@subsup{2}{}{0}=16+8+1=2
0 1 0 1 = 0 \times 2 ^ { - 1 } + 1 \times 2 ^ { - 2 } + 0 \times 2 2 ^ { - 3 } + 1 \times 2 ^ { - 4 }
= 0+1/4+0+1/16 = 0.3125
=>11001.0101 = 25.3125.

```

Convert 1000.1 to decimal
\[
\begin{aligned}
& 1000=1+2_{3}+0+0+0=8 \\
& 1=1 \times 2^{-1}=1 / 2=0.5 \\
& 1000.1=8.5_{10}
\end{aligned}
\]
- Group three/four digits together starting from the last digit of the integer part, and if there is less number of digits add some zeros in the beginning.
- Group three/ four digits together starting from the first digit of the fractional part, and if there is less number of digits add some zeros to the end.
- Covert each group of the integer and the fractional part to their equivalent Octal/hexadecimal.
- Example
\[
\begin{aligned}
& 1010.0111_{2} \Leftrightarrow 12.34_{8} \\
& 1110101.10111_{2} \Leftrightarrow 75.8_{16}
\end{aligned}
\]

\section*{Conversion from Octal or hex with fraction to binary}
- Convert each Octal/hexadecimal digit to its equivalent 3/4-bit binary digit.
- Collect the binary sequences by separating the integer part binaries from the fractional part binaries with point (.)
- Example
\[
\begin{aligned}
& \mathrm{A} 3.15_{16} \Leftrightarrow 10100011.00010101_{2} \\
& 34.27_{8} \Leftrightarrow 011100.010111_{2}
\end{aligned}
\]
- Conversion from Octal with fraction to hexadecimal
- To convert from Octal to hexadecimal, first convert the Octal to binary and then the binary to hexadecimal
- Conversion from Hexadecimal with fraction to octal
- To convert from hexadecimal to octal, first convert the hexadecimal to binary and then the binary to octal.
- Conversion from octal/hexadecimal with fraction to decimal.
- To convert from octal/hexadecimal to decimal, first convert to binary and -then the binary to decimal.
- You can also convert directly from octal/hexadecimal to decimal just as we did for the conversion from binary to decimal.

\section*{Binary addition}
- Binary addition operates by the same rule as decimal addition.
- A carry to the next higher order (or more significant) position occurs when the sum is decimal 2, that is, binary 10.
- The binary addition rules in general may be written as follows:
Example
\[
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0 \text { plus a carry of } 1
\end{aligned}
\]
\[
110+111=1101
\]
\[
10011+11111+1010=111100
\]

\section*{Binary Subtraction}
- Binary subtraction operates by the same rule as decimal subtraction.
- The rules for subtraction are as follows:
\begin{tabular}{llll}
\(0-0=0\) & & & \\
\(1-0=1\) & ■Example & & \\
\(1-1=0\) & 11100 & 101101 & 11001.011 \\
\(10-1=1\) & \(-\underline{11010}\) & \(-\underline{111}\) & \(-\underline{111.110}\) \\
& \(\underline{00010}\) & \(\underline{100110}\) & \(\underline{\underline{10001.101}}\)
\end{tabular}

\section*{Binary Multiplication}
- It is a very simple process that operates by the following intuitive rules:
- Multiplying any number by 1 makes the multiplicand unchanged
\[
\begin{aligned}
& 0 \times 1=0 \\
& 1 \times 1=1
\end{aligned}
\]
- Multiplying any number by 0 produces 0
\[
\begin{aligned}
& 0 x 0=0 \\
& 1 x 0=0
\end{aligned}
\]
- Example
\(101101 \times 1011\) = 111101111

\section*{Binary division}
- It is similar to decimal division
- It simply is the process for dividing one binary number (the dividend) by another (the divisor) and is based on the rules for binary subtraction and multiplication.
- Example
\(1111101 \div 11001\)
\(11001 \underline{\underline{101}}\)
11001
11001
00000
- Thus, \(1111101 \div 11001=\underline{\underline{101}}\)

\section*{Representation of Negative numbers}
-There are different ways of representing negative numbers in a computer:
- Sign- Magnitude Representation
- One's Complement Representation
- Two's Complement Representation

\section*{Sign- Magnitude representation}
- In signed binary representation, the left-most bit is used to indicate the sign of the number.
- 0 is used to denote a positive number and
- 1 is used to denote a negative number.
- But the magnitude part will be the same for the negative and positive values
- For example 11111111 represents -127 while, 01111111 represents +127
- In a 5-bit representation, we use the first bit for sign and the remaining 4-bits for the magnitude

\section*{Sign- magnitude representation cont'd..}
- Using 5 bit representation, the range of numbers that can be represented is from -15 (11111) to 15(01111)
- Example

Represent -12 using 5-bit sign magnitude representation first we convert 12 to binary i. e 1100
\[
\text { Now }-12=11100
\]

Represent -24 using 8-bits
\[
\begin{aligned}
24 & =00011000 \\
-24 & =10011000
\end{aligned}
\]

\section*{Sign- magnitude representation cont'd..}
- In general, for n-bit sign-magnitude representation, the range of values that can be represented is \(-\left(2^{n-1}-1\right)\) to ( \(2^{n-1}-1\) ).
- In sign magnitude representation zero can be represented as 0 or -0 .
- Sign magnitude representation has two problems:
- It reduces the maximum size of magnitude, and
- It lacks speed efficiency to perform arithmetic and other operations when implemented in computer hardware. This is because, for sign magnitude representation, addition and subtraction are relatively complex, involving the comparison of signs and relative magnitude of the two numbers

\section*{One's complement}
- In one's complement representation, all positive integers are represented in their correct binary format.
- Eg. +3 is represented as 00000011 in 8-bit 1's complement
- Negative numbers are represented by complementing (changing each 0 into 1 and each 1 into 0 ) their positive equivalent.
- Eg. -3 is represented as 11111100 in 8-bit
- As in sign magnitude, when the MSB (most significant bit) is 1 , it indicates that we have a negative number
- More formally, the 1 's complement of a negative number -N is defined as:
\[
N^{*}=\left(2^{n}-1\right)-N
\]
where: \(n\) is the number of bits per word
\(N\) is a positive integer
\(N^{*}\) is \(-N\) in 1's complement notation

\section*{One's complement cont'd..}
- For example with an 8 -bit word and \(N=6\), we have:
\(N^{*}=\left(2^{8}-1\right)-6=255-6=249=11111001_{2}\). That is
11111111
-00000110
11111001. Thus, 11111001 is -6 in 1's complement.

Example: +2 is 00000010
-2 is 11111101
- Note that in this representation, positive numbers start with a 0 on the left, and negative numbers start with a 1 on the left most bit.

\section*{One's complement cont'd..}
- Ex1. add -3 and 3 with word size 4
\(3=0011\)
\(-3=1100\)
sum =1111 (=0)
- Ex2. Add -4 and +6 with 8 -bits
- 4 is 11111011
+6 is 00000110
the sum is (1) 00000001 the one in the parenthesis is the external carry.

The correct result should be 2 or 00000010.
- In one's complement addition and subtraction, if there is an external carry it should be added to get the correct result. This indicates it requires additional circuitry for implementing this operation.

\section*{One's complement cont'd..}
- The largest number that can be represented in 8 -bit 1 's complement is \(01111111_{2}=127\). The smallest is \(10000000_{2}=-127\). Note that the values \(00000000_{2}\) and \(11111111_{2}\) both represent zero.
- What is the largest and smallest number representations for a 4-bit word? Ans: 7 and -7 .
- Use the formula \(2^{n-1}-1\) for the maximum and \(1-2^{n-1}\) for the minimum(smallest).
- There is no overflow as long as the magnitude of the result is not greater than \(2^{\mathrm{n}-1}-1\).
- One disadvantage of one's complement representation is that there are two representations of zero (i.e. 0000 and 1111, say in 4-bits).
- The other disadvantage is that the end-around carry complicates the addition operation.

\section*{Two's Complement Representation}
- In two's complement representation, positive numbers are represented just like in one's complement.
- Negative numbers, however, are represented by first computing the one's complement and then adding 1.
- Negating a number (whether negative or positive) is done by inverting all the bits and then adding 1 to that result.
- As in sign magnitude and 1 s complement, when the MSB is 1 , it indicates that we have a negative number.

\section*{Two's Complement Representation}

\section*{cont'd..}
- The reason 2's complement was introduced is so as to ignore the external carry that results during the addition process of one's complement.
- Signed integer values are usually stored on the computer in 2 s complement form.
- Ex: +3 is represented in signed binary as 00000011
- Its one's complement representation is 11111100.
- The two's complement is obtained by adding one. It is 11111101.
- Formally, the 2's complement of a negative number \(N\) is defined as:
```

N*=2n}-
where: }n\mathrm{ is the number of bits per word
N is a positive integer
N* is -N in 2's complement notation

```

\section*{Two's Complement Representation cont’d..}
- For example with an 8-bit word and \(N=6\), we have:
\[
N^{*}=2^{8}-6=256-6=250=11111010, \text { that is }
\]

100000000
\[
-\frac{110}{11111010}
\]
- An alternate way to find the 2's complement is to start at the right and complement each bit to the left of the first "1".
- For example: \(N=+6=00000110_{2}, N^{*}=-6=11111010_{2}\)
- Conversely, given the 2's complement we can find the magnitude of the number by taking it's 2's complement.

\section*{Two's Complement Representation}

\section*{cont'd..}
- The largest number that can be represented in 8 -bit 2 's complement is \(01111111_{2}=127\). The smallest is \(10000000_{2}=-128\).
- For an \(n\) digit in \(2^{\prime}\) 's complement, maximum number is \(2^{n-1}-1\) and the minimum is \(-2^{n-1}\).
- Ex let's try addition.
(3) 00000011
+ (5) 00000101
(8) 0001000
- Ex2. Let's try subtraction
(3) 00000011
(-5) 111111011
11111110
You can convert the result to 2's complement to get the magnitude of the number. It becomes 00000010.

\section*{Two's Complement Representation cont'd..}
- Ex2: add +4 and -3 (the subtraction is performed by adding the two's complement).
+4 is 00000100
-3 is 11111101
The result is [1-the carry] 00000001
- If we ignore the external carry the result is 00000001 (i.e 1 in decimal). This is the correct result.

\section*{Two's Complement Representation cont'd..}
- In two's complement, it is possible to add or subtract signed numbers, regardless of the sign.
- Using the usual rules of binary addition, the result comes out correct, including the sign.
- The carry is ignored. One's complement may be used, but if one's complement is used, special circuitry is required to "correct the result".
- When the addition of two values results in a carry, the carry bit is ignored. There is no overflow as long as the result is not greater than \(2^{n-1}-1\) nor less than \(-2^{n-1}\).

\section*{Two's Complement Representation cont’d..}

\author{
■ Find 12-10 = \(12+-10\) \\ 00001100 \\ +11110110 \\ 00000010
}
E.g. using 8-bit add 10 and 12.

00001010
+00001100
00010110
- Find -12 + 10 .

11110100
+00001010
11111110
- 11111100 is a negative number. Determine it's magnitude by finding it's 2's complement. We have 00000010 which is 2 .

\section*{Two's Complement Representation cont'd..}
- Overflow: this is an example of an overflow condition in 2's complement.
- Example
(100) 01100100
\(+(30) 00011110\)
10000010
- However, the result represents not 130 but -126. That means, because 130 is represented by 8 bits, it requires at least 9 bits to hold the sign of the result.

\section*{Two's Complement Representation}

\section*{cont'd..}
- The two's complement representation has one anomaly not found with sign magnitude or one's complement. The bit pattern 1 followed by \(\mathrm{N}-1\) zeros is its own 2's complement.
- For example, for 8-bit word,
```

-128=10000000
its 1's complement
=01111111
+1
=100000000

```
- To maintain sign bit consistency, this bit pattern is assigned the value \(-2^{\mathrm{N}-1}\).
- Thus, in 2's complement 8-bit, 10000000 represents -128.

\section*{Floating-Point Representation}
- In this representation, decimal numbers are represented with a fixed length format
- To avoid wastage of bits, this representation normalizes all the numbers.
- For example, 0.000123 wastes three zeroes on the left before non -zero digits. Normalizing this number result in \(.123 \times 10^{-3}\),
- . 123 is the normalized mantissa;
- -3 is the exponent.
- The general form of floating point representation is \(\pm \mathrm{M} \times 10^{ \pm \mathrm{E}}\) where M is the mantissa, and E is the exponent.

\section*{Floating-Point Representation cont’d..}
- To represent floating numbers in the computer system it should be normalized after converting to binary number representation system.
- Ex2 111.01 is normalized as \(.11101 \times 10^{3}\).
- The mantissa is 11101. The exponent is 3.
- The general structure of floating point is:

- In representing a number in floating point we use 1 bit for sign, some bits for exponent and the remaining bit for mantissa.

\section*{Floating-Point Representation}
- In floating point representation, the exponent is represented by a biased exponent.
- (Biased exponent)= (true exponent) \(+\left(2^{n-1}\right)\), where \(n\) is the number of bits reserved for the exponent. The biasing exponent representation is called excess \(2^{n-1}\).
- Example. Represent -226.375 in floating point using 7 bit for exponent and 16 bit for mantissa.
- First we have to change to normalized binary (i.e \(226=11100010\) and \(0.375=0.011\) )
- \(226.375=11100010.011=0.11100010011 \times 2^{8}\)
- true exponent = 8
- excess \(2^{n-1}=2^{7-1}=2^{6}=64\)
- Biased exponent \(=8+64=72=1001000_{2}\)
- Therefore -234.375 is represented as: \(111001000 \mid 1110001001100000\)

\section*{Floating-Point Representation cont'd..}
- Example. Given the number represented in a floating point representation
\begin{tabular}{|l|l|l|}
\hline 0 & 1000110 & 1000100100000000000000000 \\
\hline
\end{tabular}
- what is the number in decimal form?
- The exponent \(1000110_{2}\) is 70 . Since it is 7 bits, the biasing is 64 ; hence the true exponent is \(70-64=6\). The mantissa is \(0.10001001_{2}\). Thus, \(0.10001001_{2}\) \(x 2^{6}=100010.01_{2}\). Converting the number into decimal, we get 34.25 .

\section*{Floating-point Arithmetic}
- To perform floating-point arithmetic:
- First correct the numbers to binary with the same exponent
- Apply the operator on the mantissa and
- Normalize the result
- Example.
- Find \(123456.375+101.25\) using 7-bit for exponent and 24 bits for mantissa.
- \(123456.375=11,110,001,001,000,000.011=0.11110001001000000011 \times 2^{17}\).
\(\cdot 101.25=1,100,101.01=0.110010101 \times 2^{7}=0.0000000000110010101 \times 2^{17}\).
- Adding the mantissas gives,
\(\cdot 0.11110001001000000011+0.0000000000110010101=0.11110001010100101101\).
- The final number becomes, \(0.11110001010100101101 \times 2^{17}\).

\section*{Coding Methods in computer}
- It is possible to represent any of the characters in our language as a series of electrical switches (transistors);
- These switch arrangements can therefore be coded as a series of an equivalent arrangements of bits
- There are different coding systems, that convert one or more character sets into computer codes. Some are: EBCDIC, ASCII-7, ASCII-8 \& Unicode.
- In all cases, binary coding schemes separate the characters, known as character set, in to zones.
- A zone groups characters together so as to make the data easier to process by computers.
- With in each zone the individual characters are identified by digit code.

\section*{EBCDIC}
- Pronounced as "Eb-see-dick" and stands for Extended Binary Coded Decimal Interchange Code.
- Proprietary specification developed by IBM
- It is an 8-bit coding scheme; ( 00000000 to 11111111 )
- It accommodates to code \(2^{8}\) or 256 different characters
- It is a standard coding scheme for mainframe computers of IBM.
- Coding Examples
\begin{tabular}{lll} 
Character & Zone(4BIT) & Digit(4 BIT) \\
\(0-9\) & 15 & \(0-9\) \\
a-I & 8 & \(1-9\) \\
j-r & 9 & \(1-9\) \\
s-z & 10 & \(2-9\) \\
A-I & 12 & \(1-9\)
\end{tabular}

\section*{EBCDIC}
cont'd..
- Coding Examples
\begin{tabular}{llll} 
Character & & Zone & Digit \\
\cline { 1 - 1 } & & 1000 & 0001 \\
b & 1000 & 0010 \\
A & 1100 & 0001 \\
B & 1100 & 0010 \\
0 & 1111 & 0000 \\
9 & 1111 & 1001
\end{tabular}

\section*{EBCDIC}
 C'jaracters ju EBCDuC
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Char } & \multicolumn{2}{|c|}{ EBCDIC Code } & \multirow{2}{*}{ Hex } \\
\cline { 2 - 3 } & Digit & Zone & \\
\hline A & 1100 & 0001 & C1 \\
\hline B & 1100 & 0010 & C2 \\
\hline C & 1100 & 0011 & C3 \\
\hline D & 1100 & 0100 & C4 \\
\hline E & 1100 & 0101 & C5 \\
\hline F & 1100 & 0110 & C6 \\
\hline G & 1100 & 0111 & C7 \\
\hline H & 1100 & 1000 & C8 \\
\hline I & 1100 & 1001 & C9 \\
\hline J & 1101 & 0001 & D1 \\
\hline K & 1101 & 0010 & D2 \\
\hline L & 1101 & 0011 & D3 \\
\hline M & 1101 & 0100 & D4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Char } & \multicolumn{2}{|c|}{ EBCDIC Code } & \multirow{2}{*}{ Hex } \\
\cline { 2 - 3 } & Digit & Zone & \\
\hline\(N\) & 1101 & 0101 & D5 \\
\hline\(O\) & 1101 & 0110 & D6 \\
\hline\(P\) & 1101 & 0111 & D7 \\
\hline\(Q\) & 1101 & 1000 & D8 \\
\hline\(R\) & 1101 & 1001 & D9 \\
\hline\(S\) & 1110 & 0010 & E2 \\
\hline\(T\) & 1110 & 0011 & E3 \\
\hline\(U\) & 1110 & 0100 & E4 \\
\hline\(V\) & 1110 & 0101 & \(E 5\) \\
\hline\(W\) & 1110 & 0110 & E6 \\
\hline\(X\) & 1110 & 0111 & E7 \\
\hline\(Y\) & 1110 & 1000 & E8 \\
\hline\(Z\) & 1110 & 1001 & \(E 9\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Character } & \multicolumn{2}{|c|}{ EBCDIC Code } & Hexadecima \\
\cline { 2 - 4 } & Digit & Zone & I Equivalent \\
\hline 0 & 1111 & 0000 & F0 \\
\hline 1 & 1111 & 0001 & F1 \\
\hline 2 & 1111 & 0010 & F2 \\
\hline 3 & 1111 & 0011 & F3 \\
\hline 4 & 1111 & 0100 & \(F 4\) \\
\hline 5 & 1111 & 0101 & \(F 5\) \\
\hline 6 & 1111 & 0110 & \(F 6\) \\
\hline 7 & 1111 & 0111 & \(F 7\) \\
\hline 8 & 1111 & 1000 & \(F 8\) \\
\hline 9 & 1111 & 1001 & \(F 9\) \\
\hline
\end{tabular}
continued on next slis

\section*{EBCDIC}

\section*{EBCDIC Coching sicherse}

\section*{Example}

Using binary notation, write EBCDIC coding for the word BIT. How many bytes are required for this representation?

\section*{Solution:}
\(B=11000010\) in EBCDIC binary notation
\(I=11001001\) in EBCDIC binary notation
\(T=11100011\) in EBCDIC binary notation
Hence, EBCDIC coding for the word BIT in binary notation will be
\(\begin{array}{ccc}\frac{11000010}{B} & \frac{11001001}{\mathrm{I}} & \frac{11100011}{\mathrm{~T}}\end{array}\)
3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits)

EBCDIC


\section*{ASCII}
- ASCII stands for American Standard Code for Information Interchange
- ASCII is of two types: ASCII-7 and ASCII-8
- ASCII-7 Used widely before the introduction of ASCII-8 (the Extended ASCII)
- ASCII-7 Uses 7 bits to represent a character
- With the seven bits, \(2^{7}\) ( or 128 ) different characters can be coded (00000001111111)
- It has a zone and digit bits positions
- Coding examples:
\begin{tabular}{lll} 
Character & zone (3 BIT) & digit(4 BIT) \\
\(0-9\) & 3 & \(0-9\) \\
A-O & 4 & \(1-15\) \\
P-Z & 5 & \(0-10\)
\end{tabular}

\section*{ASCII}

Coding of Nomenceand
Adiabetic Cijaraciers in AScti

Coding of Numericand
Ap piabetic Cifaracers in ASCit
tinued from previous slide..)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Character } & \multicolumn{2}{|c|}{ ASCII-7 / ASCII-8 } & \multirow{2}{*}{\begin{tabular}{c} 
Hexadecimal \\
Equivalent
\end{tabular}} \\
\cline { 2 - 3 } & Zone & Digit & 30 \\
\hline 0 & 0011 & 0000 & 31 \\
\hline 1 & 0011 & 0001 & 32 \\
\hline 2 & 0011 & 0010 & 32 \\
\hline 3 & 0011 & 0011 & 33 \\
\hline 4 & 0011 & 0100 & 34 \\
\hline 5 & 0011 & 0101 & 35 \\
\hline 6 & 0011 & 0110 & 36 \\
\hline 7 & 0011 & 0111 & 37 \\
\hline 8 & 0011 & 1000 & 38 \\
\hline 9 & 0011 & 1001 & 39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Character } & \multicolumn{2}{|c|}{ ASCII-7 / ASCII-8 } & \multirow{2}{*}{\begin{tabular}{c} 
Hexadecimal \\
Equivalent
\end{tabular}} \\
\cline { 2 - 3 } & Zone & Digit & 41 \\
\hline A & 0100 & 0001 & 42 \\
\hline B & 0100 & 0010 & 43 \\
\hline C & 0100 & 0011 & 44 \\
\hline D & 0100 & 0100 & 45 \\
\hline E & 0100 & 0101 & 46 \\
\hline F & 0100 & 0110 & 46 \\
\hline G & 0100 & 0111 & 47 \\
\hline H & 0100 & 1000 & 48 \\
\hline I & 0100 & 1001 & 49 \\
\hline J & 0100 & 1010 & \(4 A\) \\
\hline K & 0100 & 1011 & \(4 B\) \\
\hline L & 0100 & 1100 & \(4 C\) \\
\hline M & 0100 & 1101 & \(4 D\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Character } & \multicolumn{2}{|c|}{ ASCII-7 /ASCII-8 } & \multirow{2}{*}{\begin{tabular}{c} 
Hexadecimal \\
Equivalent
\end{tabular}} \\
\cline { 2 - 3 } & Zone & Digit & \(4 E\) \\
\hline\(N\) & 0100 & 1110 & \(4 F\) \\
\hline 0 & 0100 & 1111 & 50 \\
\hline\(P\) & 0101 & 0000 & 51 \\
\hline Q & 0101 & 0001 & 52 \\
\hline R & 0101 & 0010 & 53 \\
\hline S & 0101 & 0011 & 54 \\
\hline T & 0101 & 0100 & 55 \\
\hline U & 0101 & 0101 & 56 \\
\hline V & 0101 & 0110 & 57 \\
\hline X & 0101 & 0111 & 58 \\
\hline Y & 0101 & 1000 & 59 \\
\hline Z & 0101 & 1001 & 1010 \\
\hline
\end{tabular}

\section*{ASCII-7}
cont'd..
- Coding examples:
\begin{tabular}{|c|c|c|}
\hline Character & Zone & Digit \\
\hline \$ & 010 & 0100 \\
\hline \% & 010 & 0101 \\
\hline A & 100 & 0001 \\
\hline a & 110 & 0001 \\
\hline b & 110 & 0010 \\
\hline
\end{tabular}

\section*{ASCII-7}

\section*{cont'd..}

\section*{ASCir-7 Cocling Sictease}

\section*{Example}

Write binary coding for the word BOY in ASCII-7. How many bytes are required for this representation?

\section*{Solution:}
\(B=1000010\) in ASCII-7 binary notation
\(O=1001111\) in ASCII-7 binary notation
\(Y=1011001\) in ASCII-7 binary notation

Hence, binary coding for the word BOY in ASCII-7 will be


Since each character in ASCII-7 requires one byte for its representation and there are 3 characters in the word BOY, 3 bytes will be required for this representation

\section*{The ASCII System}
- Also referred as ASCII-8 or Extended ASCII
- It is the most widely used type of coding scheme for microcomputer systems
- ASCII uses 8 -bits to represent alphanumeric characters(letters, digits and special symbols).
- With the 8 -bits, ASCII can represent \(2^{8}\) or 256 different characters(0000000011111111).
- Coding Example
\begin{tabular}{ll} 
Character & Binary representation in ASCII \\
a & 01100001 \\
b & 01100010 \\
A & 01000001 \\
B & 01000010 \\
\(?\) & 00111111 \\
+ & 00101011 \\
1 & 00110001 \\
2 & 00110010 \\
3 & 00110011
\end{tabular}

\section*{ASCII}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & H－x & Crar & commment & D三－ & H三x & Char &  & HEx & Char & D＝E－ & HEx & Crar \\
\hline 0 & 00 & N－LIL & N & 32 & 20 & \(5 \square=0\) & 64 & 40 & \(\underline{\square}\) & 56 & 60 & \\
\hline 7 & 01 & SO & Sertur－meding & 33 & \(\geq 1\) & － & 65 & 41 & A & 97 & E1 & \＃ \\
\hline \(z\) & 02 & \(S T X\) & Stertuithext & 34 & \(\geq 2\) & \(=\) & 65 & 42 & E & Sct & 62 & 1 b \\
\hline 3 & 03 & ETx & Endil af Text & 35 & 23 & \＃ & 67 & 43 & \(c\) & 99 & 1683 & 0 \\
\hline 4 & 104 & EOT & Endi uf Trencmiseion & 35 & 24 & \＄ & Es & 44 & D & 1100 & 64 & ald \\
\hline 5 & 105 & ENOC & Encurry & 37 & \(\geq 5\) & \％ & 69 & 45 & E & 1107 & 65 & \(\equiv\) \\
\hline 6 & 06 & ACO & Astanoviterige & 38 & 26 & 8 & 70 & 46 & F & －102 & 66 & F \\
\hline 7 & 07 & EEL & \(E=110 \mathrm{ling}\) & 39 & \(\geq 7\) & ＊ & 71 & 47 & 3 & 1103 & 67 & 9 \\
\hline \(\underline{8}\) & 048 & ES & E＝aclaperos & 40 & 28 & ［ & 72 & 48 & \(\square\) & 1104 & Esi & n \\
\hline 9 & 09 & HT & H－rzantil T\＃b & 41 & 29 & 7 & 73 & 49 & II & 1105 & 69 & － \\
\hline 10 & OM， & L \(=\) & LTE Fand & 42 & 24 & \(\pm\) & 74 & 4.4 & － & 100 & EA & － \\
\hline 11 & 0E & VT &  & 43 & \(\geq 8\) & \(+\) & 75 & 4E & \(\underline{C}\) & 109 & 6E & － \\
\hline －12 & 106 & FF & Form Fowd fave peg＝］ & 44 & 20 & \(=\) & 76 & 40 & L & 100 & EC & I \\
\hline 13 & 1 O & 1 Ca & C＝meige Retum & 45 & \(\geq 0\) & － & 77 & 40 & N & 1109 & 6 & 1 m \\
\hline －14 & 0三 & 50 & SnT＊ & 46 & z三 & － & 78 & 4E & \(N\) & 1110 & EE & n \\
\hline －15 & 10＝ & 51 & Smitill & 47 & z＝ & 7 & 75 & \(4=\) & 0 & －171 & 6F & 0 \\
\hline 16 & 10 & ロレミ &  & 48 & 30 & 0 & 180 & 50 & P & 112 & 70 & P \\
\hline 17 & 11 & ロー & Device comtel 1 & 49 & 31 & 1 & 31 & 51 & 0 & 113 & 71 & 4 \\
\hline －18 & 12 & ロース & Dewice contolz & 50 & 32 & \(\geq\) & 82 & 52 & Fic & 11.4 & \(7 \geq\) & r \\
\hline －19 & 13 & ロー3 & Device contel & 51 & 33 & 3 & 83 & 53 & 5 & 115 & 73 & 5 \\
\hline 20 & 14 & Dra & Dewice contel 4 & 52 & 34 & 4 & 184 & 54 & T & 116 & 74 & 5 \\
\hline \(\geq 1\) & 15 & NAEC & N＝gative Astancwledge & 53 & 35 & 5 & 185 & 55 & ILI & 117 & 75 & \(\square\) \\
\hline \(\geq 2\) & 16 & 5 YN & Symethomous lute & 54 & 36 & 6 & B6 & 56 & v＇ & －178 & 76 & w \\
\hline \(\geq 3\) & 17 & ETE & Endi uf Trememiosion Eluoud & 55 & 37 & 7 & 87 & 57 & V1 & 119 & 77 & vir \\
\hline 24 & 18 & CAN & cancol & 56 & 38 & 3 & 18－8 & 58 & \(x\) & 120 & 78 & \(\times\) \\
\hline 25 & 19 & EN &  & 57 & 39 & 9 & 189 & 59 & Y & 121 & 79 & Y \\
\hline 26 & －1．4 & SuE & Subettut & 58 & \(3{ }^{4}\) & ＝ & 50 & \(5{ }_{5}\) & \(z\) & 122 & 7 A & z \\
\hline \(\geq 7\) & － & ESC &  & 59 & 3E & \(\equiv\) & 91 & 58 & ［］ & 123 & \(7 E\) & \(\underline{1}\) \\
\hline 28 & 10 & 5 & Fill Seperstor & 60 & 30 & \(=\) & 92 & 50 & 5 & 124 & 76 & 1 \\
\hline 29 & 15 & 65 & Group Sepurstir & 61 & 30 & \(=\) & 93 & 50 & ］ & 125 & 72 & 1 \\
\hline 30 & －1E & FSE & Foxocol Seprerstor & 62 & 플 & \(\geq\) & 54 & 5 S & － & 126 & 7 클 & \(\sim\) \\
\hline 31 & －1F & US &  & 63 & \＃\(=\) & 7 & 95 & \(5=\) & － & 12 & 7 F & \[
\begin{gathered}
D E L \\
D=6=-
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{The ASCII System}

\section*{ASclit- coding Sichense}

\section*{Example}

Write binary coding for the word SKY in ASCII-8. How many bytes are required for this representation?

\section*{Solution:}
\[
\begin{aligned}
& S=01010011 \text { in ASCII-8 binary notation } \\
& K=01001011 \text { in ASCII-8 binary notation } \\
& Y=01011001 \text { in ASCII-8 binary notation }
\end{aligned}
\]

Hence, binary coding for the word SKY in ASCII-8 will be
\[
\frac{01010011}{S} \frac{01001011}{\mathrm{~K}} \frac{01011001}{\mathrm{Y}}
\]

Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation

\section*{Unicode}
- Unicode is a computing industry standard allowing computers to consistently represent and manipulate text expressed in most of the world's writing systems.
- Unicode consists of a collection of more than 100,000 characters.
- Unicode can be implemented by different character encodings.
- The most commonly used encodings are UTF-8 which uses 1 byte for all ASCII characters, which have the same code values as in the standard ASCII encoding, and up to 4 bytes for other characters

\section*{Unicode}

\section*{Unjcoce}
- Why Unicode:
- No single encoding system supports all languages
- Different encoding systems conflict
- Unicode features:
- Provides a consistent way of encoding multilingual plain text
- Defines codes for characters used in all major languages of the world
- Defines codes for special characters, mathematical symbols, technical symbols, and diacritics

\section*{Unicode cont'd..}
- Let's consider how Ethiopia's character sets are represented
- The character set is called Ethiopic
- Range: 1200-1378 (in hexadecimal)
- Example character sets

\begin{tabular}{|c|c|c|}
\hline 242 & - & ETHMOPIC STILAESE C \\
\hline 1243 & - & ETHIOPICSYILNALEQAA \\
\hline 1244 & - \({ }^{2}\) & ETHHOPICSMEIAMLE QEE \\
\hline 1245 & 7 & ETHHICPICSMILABLE CYE \\
\hline 1246 & - & ETHIOPICSYLUAELE \\
\hline 1247 & 5 & ETHIOPPCSYMLIESLE QOA \\
\hline 1248 & \(\underline{5}\) & ETHICPICSYILAELE CWNA \\
\hline 1249 & * \(\$\) & Sreserved \\
\hline 124 A & Pre & ETHHISPICSYMIAELE QWWII \\
\hline 124 B & 4 & ETHICPICSYMIABLE QWWAA \\
\hline 1240 & t & ETHIOPICSYTLABLE QWVEE \\
\hline 124 D & \(\cdots\) & ETHICPICSYRLAELE QNVE \\
\hline 124E & & <reservedis \\
\hline 124F & & -neser vedis \\
\hline 1250 & & ETHICIICSYILAELEDHA \\
\hline 1251 & Fif & ETHIOPIC SYMLIAELE QHIU \\
\hline 1252 & Ffe & ETHIOMPICSYILAESLE QHII \\
\hline 1253 & Pr & ETHICIPICSYILAESLE OHAM \\
\hline 1254 & FE & ETHIDPICSYMLAELE QHHEE \\
\hline 1255 & 7 & ETHICPIC SYRHIMELE QHME \\
\hline 1256 & ctis &  \\
\hline 1257 & & Creserverls \\
\hline 1258 & & ETHIDPICSYMLABLEQUMWA \\
\hline 1259 & & -reservedi> \\
\hline 1254 & Frer & ETHHIOPICSYRILABLE OHIWNI \\
\hline 125B & H2 & ETHICIPICSYLUAELE DHWNAA \\
\hline 1250 & \(3{ }^{2}\) & ETHIOPIC STLIAELE QHWWEE \\
\hline 1250 & F & ETHICPICSYMINAEE CHWE \\
\hline
\end{tabular}```

